Abstract
Thiazolidinediones such as pioglitazone have been shown to exert anti-inflammatory
effects independent of their insulin sensitizing effects by reducing activation of
the proinflammatory transcription factor NF-κB in animal models of experimental diabetes.
Furthermore, short-term pioglitazone treatment ameliorates endothelial dysfunction
in conduit arteries of patients with type 2 diabetes. Since inflammation is supposed
to impair flow-mediated vasodilatation, we studied the effects of an 8-week pioglitazone
intervention on endothelial function and mononuclear NF-κB activation in patients
with type 2 diabetes. Twenty patients were included in a randomized, double-blind,
placebo-controlled study receiving 30 mg pioglitazone or placebo, respectively. Flow-mediated
endothelium dependent vasodilatation (FMD) of the brachial artery, NF-κB binding activity
in peripheral blood mononuclear cells [pBMC, determined by electrophoretic mobility
shift assay (EMSA)] and interleukin-6 (IL-6)-transcription rates (determined by real-time
PCR) were measured at study entry and after eight weeks of intervention. Pioglitazone
treatment resulted in a significant improvement of FMD (4.3%±3.3; p=0.003), while
no effect was seen under placebo medication (2.0%±2.7; p=0.71). The correction of
FMD was neither paralleled by a pioglitazone-dependent reduction in mononuclear NF-κB
binding activity (ΔNF-κB activity: pioglitazone: 9.2%±6.7, p=0.24; placebo: 5.7%±19.6;
p=0.82) nor in NF-κB dependent gene transcription as determined for IL-6 (ΔIL-6 pioglitazone:
+1.8%±12.0, p=0.93; placebo: -0.2%±9.7; p=0.92). These data demonstrate for the first
time that pioglitazone treatment improves endothelial dysfunction in patients with
type 2 diabetes without affecting NF-κB binding activity and NF-κB dependent proinflammatory
gene expression in pBMC.
Key words
NF-κB activity - type 2 diabetes - endothelial function - flow-mediated vasodilatation
- pioglitazone
References
1
Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM,
Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K,
Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A,
Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J. PROactive investigators
.
Secondary prevention of macrovascular events in patients with type 2 diabetes in the
PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events):
a randomised controlled trial.
Lancet.
2005;
366
1279-1289
2
Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC,
Holman RR.
Association of glycaemia with macrovascular and microvascular complications of type
2 diabetes (UKPDS 35): prospective observational study.
BMJ.
2000;
321
405-412
3
Sourij H, Zweiker R, Wascher TC.
Effects of pioglitazone on endothelial function, insulin sensitivity, and glucose
control in subjects with coronary artery disease and new-onset type 2 diabetes.
Diabetes Care.
2006;
29
1039-1045
4
Suzuki M, Takamisawa I, Yoshimasa Y, Harano Y.
Association between insulin resistance and endothelial dysfunction in type 2 diabetes
and the effects of pioglitazone.
Diabetes Res Clin Pract.
2007;
76
12-17
5
Martens FM, Visseren FL, Koning EJ de, Rabelink TJ.
Short-term pioglitazone treatment improves vascular function irrespective of metabolic
changes in patients with type 2 diabetes.
J Cardiovasc Pharmacol.
2005;
46
773-778
6
Da Ros R, Assaloni R, Ceriello A.
The preventive anti-oxidant action of thiazolidinediones: a new therapeutic prospect
in diabetes and insulin resistance.
Diabet Med.
2004;
21
1249-1252
7
Fukunaga Y, Itoh H, Doi K, Tanaka T, Yamashita J, Chun TH, Inoue M, Masatsugu K, Sawada N,
Saito T, Hosoda K, Kook H, Ueda M, Nakao K.
Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate
endothelial cell growth and secretion of vasoactive peptides.
Atherosclerosis.
2001;
158
113-119
8
Taniguchi J, Honda H, Shibusawa Y, Iwata T, Notoya Y.
Alteration in endothelial function and modulation by treatment with pioglitazone in
rabbit renal artery from short-term hypercholesterolemia.
Vascul Pharmacol.
2005;
43
47-55
9
Kutuk O, Basaga H.
Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development
in atherosclerosis.
Trends Mol Med.
2003;
9
549-557
10
Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP.
The role of oxidative stress and NF-kappaB activation in late diabetic complications.
Biofactors.
1999;
10
157-167
11
Bierhaus A, Nawroth PP.
Modulation of the vascular endothelium during infection-the role of NF-kappaB activation.
Contrib Microbiol.
2003;
10
86-105
12
Zelvyte I, Dominaitiene R, Crisby M, Janciauskiene S.
Modulation of inflammatory mediators and PPARgamma and NF-kappaB expression by pravastatin
in response to lipoproteins in human monocytes in vitro.
Pharmacol Res.
2002;
45
147-154
13
Jung KJ, Kim JY, Zou Y, Kim YJ, Yu BP, Chung HY.
Effect of short-term, low dose aspirin supplementation on the activation of pro-inflammatory
NF-kappaB in aged rats.
Mech Ageing Dev.
2006;
127
223-230
14
Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J,
Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R.
International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound
assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery:
a report of the International Brachial Artery Reactivity Task Force.
J Am Coll Cardiol.
2002;
39
257-265
15
Bots ML, Westerink J, Rabelink TJ, Koning EJ de.
Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of
technical aspects of the FMD measurement on the FMD response.
Eur Heart.
2005;
26
363-368
16
Hofmann MA, Schiekofer S, Kanitz M, Klevesath MS, Joswig M, Lee V, Morcos M, Tritschler H,
Ziegler R, Wahl P, Bierhaus A, Nawroth PP.
Insufficient glycemic control increases nuclear factor-kappa B binding activity in
peripheral blood mononuclear cells isolated from patients with type 1 diabetes.
Diabetes Care.
1998;
21
1310-1316
17
Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T,
Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M,
Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP.
Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.
Diabetes.
2001;
50
2792-2808
18
Bierhaus A, Chevion S, Chevion M, Quehenberger P, Hofmann M, Illmer T, Luther T, Berentshtein E,
Tritschler H, Müller M.
Advanced glycation endproducts (AGEs) induced activation of NF-κB is suppressed by
α-lipoic acid in cultured endothelial cells.
Diabetes.
1997;
46
1481-1490
19
Bierhaus A, Zhang Y, Deng Y, Mackman N, Quehenberger P, Haase M, Luther T, Müller M,
Böhrer H, Greten J.
Mechanism of the TNFα mediated induction of endothelial tissue factor.
J Biol Chem.
1995;
270
26419-26432
20
Bradford MM.
A rapid and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding.
Anal Biochem.
1996;
72
248-254
21
Schiekofer S, Rudofsky G, Andrassy M, Schneider J, Chen J, Isermann B, Kanitz M, Elsenhans S,
Heinle H, Balletshofer B, Haring HU, Schleicher E, Nawroth PP, Bierhaus A.
Glimepiride reduces mononuclear activation of the redox-sensitive transcription factor
nuclear factor-kappa B.
Diabetes Obes Metab.
2003;
5
251-261
22
Rudofsky Jr G, Reismann P, Schiekofer S, Petrov D, Eynatten M, Humpert PM, Isermann B,
Muller-Hoff C, Thai TP, Lichtenstein S, Bartsch U, Hamann A, Nawroth P, Bierhaus A.
Reduction of postprandial hyperglycemia in patients with type 2 diabetes reduces NF-kappaB
activation in PBMCs.
Horm Metab Res.
2004;
36
630-638
23
Bierhaus A, Chevion S, Chevion M, Quehenberger P, Hofmann M, Illmer T, Luther T, Berentshtein E,
Tritschler H, Müller M.
Advanced glycation endproducts (AGEs) induced activation of NF-κB is suppressed by
α-lipoic acid in cultured endothelial cells.
Diabetes.
1997;
46
1481-1490
24
Pahl HL, Baeuerle PA.
Expression of influenza virus hemagglutinin activates the transcription factor NFκB.
J Virol.
1995;
69
1480-1484
25
Eynatten M von, Schneider JG, Humpert PM, Rudofsky G, Schmidt N, Barosch P, Hamann A,
Morcos M, Kreuzer J, Bierhaus A, Nawroth PP, Dugi KA.
Decreased plasma lipoprotein lipase in hypoadiponectinemia: an association independent
of systemic inflammation and insulin resistance.
Diabetes Care.
2004;
27
2925-2929
26
Kim JA, Montagnani M, Koh KK, Quon MJ.
Reciprocal relationships between insulin resistance and endothelial dysfunction: mole-cular
and pathophysiological mechanisms.
Circulation.
2006;
113
1888-1904
27
Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, Fronzo RA De,
Kahn CR, Mandarino LJ.
Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated
signaling in human muscle.
J Clin Invest.
2000;
105
311-320
28
Madonna R, Pandolfi A, Massaro M, Consoli A, Caterina R De.
Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial
cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase.
Diabetologia.
2004;
47
532-536
29
Marx N, Duez H, Fruchart JC, Staels B.
Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene
expression in vascular cells.
Circ Res.
2004;
94
1168-1178
30
Stumvoll M, Goldstein BJ, Haeften TW van.
Type 2 diabetes: principles of pathogenesis and therapy.
Lancet.
2005;
365
1333-1346
31
Haider DG, Leuchten N, Schaller G, Gouya G, Kolodjaschna J, Schmetterer L, Kapiotis S,
Wolzt M.
C-reactive protein is expressed and secreted by peripheral blood mononuclear cells.
Clin Exp Immunol.
2006;
146
533-539
32
Park KG, Lee KM, Chang YC, Magae J, Ando K, Kim KB, Kim YN, Kim HS, Park JY, Lee KU,
Lee IK.
The ascochlorin derivative, AS-6, inhibits TNF-alpha-induced adhesion molecule and
chemokine expression in rat vascular smooth muscle cells.
Life Sci.
2006;
80
120-126
33
Inoue I, Goto S, Matsunaga T, Nakajima T, Awata T, Hokari S, Komoda T, Katayam S.
The ligands/activators for peroxisome proliferator-activated receptor alpha (PPARalpha)
and PPARgamma increase Cu2+ , Zn2+ -superoxide dismutase and decrease p22phox message expressions in primary endothelial
cells.
Metabolism.
2001;
50
3-11
34
Artwohl M, Holzenbein T, Furnsinn C, Freudenthaler A, Huttary N, Waldhausl WK, Baumgartner-Parzer SM.
Thiazolidinediones inhibit apoptosis and heat shock protein 60 expression in human
vascular endothelial cells.
Thromb Haemost.
2005;
93
810-815
35
Srinivasan S, Hatley ME, Reilly KB, Danziger EC, Hedrick CC.
Modulation of PPARalpha expression and inflammatory interleukin-6 production by chronic
glucose increases monocyte/endothelial adhesion.
Arterioscler Thromb Vasc Biol.
2004;
24
851-857
36
Marx N, Walcher D, Ivanova N, Rautzenberg K, Jung A, Friedl R, Hombach V, Caterina R,
Basta G, Wautier MP, Wautiers JL.
Thiazolidinediones reduce endothelial expression of receptors for advanced glycation
end products.
Diabetes.
2004;
53
2662-2668
37
Edelstein LC, Pan A, Collins T.
Chromatin modification and the endothelial-specific activation of the E-selectin gene.
J Biol Chem.
2005;
280
11192-11202
38
Goldberg RB.
Impact of thiazolidenediones on serum lipoprotein levels.
Curr Atheroscler Rep.
2006;
8
397-404
39
Khan M, Murray FT, Karunaratne M, Perez A.
Pioglitazone and reductions in post-challenge glucose levels in patients with type
2 diabetes.
Diabetes Obes Metab.
2006;
8
31-38
40
Al Majali K, Cooper MB, Staels B, Luc G, Taskinen MR, Betteridge DJ.
The effect of sensitisation to insulin with pioglitazone on fasting and postprandial
lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities
in type 2 diabetic patients.
Diabetologia.
2006;
49
527-537
41
Mori Y, Ojima K, Fuujimori Y, Aoyagi I, Kusama H, Yamazaki Y, Kojima M, Shibata N,
Itoh Y, Tajima N.
Effects of mitiglinide on glucose-induced insulin release into the portal vein and
fat-induced triglyceride elevation in prediabetic and diabetic OLETF rats.
Endocrine.
2006;
29
309-315
42
Gastaldelli A, Casolaro A, Pettiti M, Nannipieri M, Ciociaro D, Frascerra S, Buzzigoli E,
Baldi S, Mari A, Ferrannini E.
Effect of pioglitazone on the metabolic and hormonal response to a mixed meal in type
II diabetes.
Clin Pharmacol Ther.
2007;
81
205-212
43
Suzuki M, Takamisawa I, Yoshimasa Y, Harano Y.
Association between insulin resistance and endothelial dysfunction in type 2 diabetes
and the effects of pioglitazone.
Diabetes Res Clin Pract.
2007;
76
12-17
44
Title LM, Cummings PM, Giddens K, Nassar BA.
Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy
adults without diabetes: an effect prevented by vitamins C and E.
J Am Coll Cardiol.
2000;
36
2185-2191
45
Westphal S, Taneva E, Kastner S, Martens-Lobenhoffer J, Bode-Boger S, Kropf S, Dierkes J,
Luley C.
Endothelial dysfunction induced by postprandial lipemia is neutralized by addition
of proteins to the fatty meal.
Atherosclerosis.
2006;
185
313-319
46
Tushuizen ME, Nieuwland R, Scheffer PG, Sturk A, Heine RJ, Diamant M.
Two consecutive high-fat meals affect endothelial-dependent vasodilation, oxidative
stress and cellular microparticles in healthy men.
J Thromb Haemost.
2006;
4
1003-1010
47
Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R,
Christ ER.
Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial
glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective,
randomized crossover study.
Diabetes Metab Res Rev.
2007;
23
392-399
Correspondence
A. BierhausPhD
Department of Medicine I and Clinical Chemistry
University of Heidelberg
Im Neuenheimer Feld 410
69120 Heidelberg
Germany
Phone: +49/622/156 47 52
Fax: +49/622/156 47 54
Email: angelika_bierhaus@med.uni-heidelberg.de